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Motivation

I A large class of problems in statistics, machine learning, and signal
processing requires sequential processing of observed data.

I Examples of applications:
I Geophysical systems (atmosphere, oceans)
I Robotics
I Target tracking, positioning, navigation
I Communications
I Biomedical signal processing
I Financial engineering
I Ecology
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Inference in State-Space Models (SSM)

I Let us consider:
I a set of hidden states xt ∈ Rdx , t = 1, ..., T .
I a set of observations yt ∈ Rdy , t = 1, ..., T .

I A SSM is an underlying hidden process of xt that evolves and that,
partially and noisily, expresses itself through yt.

xt−1 xt xt+1

yt−1 yt yt+1

... ...

I Two ways or describing the system:
1. Deterministic notation:

I Hidden state → xt = g(xt−1,qt)
I Observations → yt = h(xt, rt)

where qt and rt are random noise vector (with known distributions of qt
and rt) and g(·) and h(·) are also known.

2. Probabilistic notation:
I Hidden state → p(xt|xt−1)
I Observations → p(yt|xt)
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Example
I There are two interrelated random processes, one is observed and one is

hidden.
I e.g.,stochastic volatility model, very common in financial engineering

xt = 0.999xt−1 + qt

yt = e
xt
2 rt,

I with qt ∼ N (0, 1) and rt ∼ N (0, 1)
I Goal: estimate the hidden xt given the observed y1:t
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Example

I Consider the following stochastic volatility model, very common in
financial engineering

xt = 0.999xt−1 + qt

yt = e
xt
2 rt,

I with qt ∼ N (0, 1) and rt ∼ N (0, 1)
I Goal: estimate the hidden xt given the observed y1:t
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The estimation problem

I We sequentially observe observations yt related to the hidden state xt.
I At time t, we have accumulated t observations, y1:t ≡ {y1, ...,yt}.
I Bayesian inference to estimate the unknown states

I measure of certainty by computing pdfs
I The basic problems:

I Filtering: estimate current state p(xt|y1:t)
I Smoothing: refine estimate of past states p(xt−τ |y1:t), τ ≥ 1
I State prediction: predict the future state p(xt+τ |y1:t), τ ≥ 1
I Observation prediction: predict the future observation
p(yt+τ |y1:t), τ ≥ 1

I We will focus on smoothing and filtering problems
I We want to do it sequentially and efficiently.

I At time t, we want to process only yt, but not reprocess all y1:t−1 (that
were already processed!)
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The linear-Gaussian Model

I The linear-Gaussian model is arguably the most relevant SSM:
I Deterministic notation:

I Unobserved state → xt = Atxt−1 + qt
I Observations → yt = Htxt + rt

where qt ∼ N (0,Qt) and rt ∼ N (0,Rt).
I Probabilistic notation:

I Hidden state → p(xt|xt−1) ≡ N (xt;Atxt−1,Qt)
I Observations → p(yt|xt) ≡ N (yt;Htxt,Rt)

I Kalman filter: obtains the filtering pdfs p(xt|y1:t), at each t
I Gaussian pdfs, with means and covariances matrices are calculated at each t
I Efficient processing of yt, obtaining p(xt|y1:t) from p(xt−1|y1:t−1)

(intermediate p(xt|y1:t−1) result)
I Rauch-Tung-Striebel (RTS) smoother: obtains the smoothing distribution
p(x1:T |y1:T ), i.e., posterior of the whole trajectory

I requires a backwards reprocessing, refining the Kalman estimates
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Kalman Filter: prediction step

1. Prediction step (marginalization of Gaussian):

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

I Suppose that filtered distribution at t− 1 is Gaussian
p(xt−1|y1:t−1) ≡ N (mt−1,Pt−1).

I Predictive distribution is also Gaussian p(xt|y1:t−1) ≡ N (m−t ,P
−
t )

I Mean: m−t = Atmt−1

I Variance: P−t = AtPt−1AT
t + Qt

I Interpretation:
I The mean is projected through matrix At

I The uncertainty is propagated too through At, plus the variance
of the process noise
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Kalman Filter: update step

2. Update step (product of Gaussians):

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)

I The filtered distribution at time t is also Gaussian p(xt|y1:t) ≡ N (mt,Pt)

I Mean: mt = m−t +Kt

(
yt −Htm

−
t

)
I Variance: Pt = (I −KtHt)P−t

where Kt = P−t H
T
t

(
HtP

−
t H

T
t + Rt

)−1 is the optimal Kalman gain.

I Interpretation:
I The mean is corrected w.r.t. the predictive in the direction of the

residual/error.
I The variance is propagated by Ht and divided by the covariance of

the residual/error.
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Kalman summary and RTS smoother

Kalman filter
I Initialize: m0, P0

I For t = 1, . . . , T

Predict stage:
x−t = Atmt−1

P−t = AtPt−1A>t +Qt

Update stage:
zt = yt −Htx

−
t

St = HP−t H>t + Rt

Kt = P−t H>t S−1
t

mt = x−t + Ktzt
Pt = P−t −KtStK>t

RTS smoother
I For t = T, . . . , 1

Smoothing stage:
x−t+1 = Atmt

P−t+1 = AtPtA>t + Qt

Gt = PtA>t (P−t+1)
−1

ms
t = mt + Gt(ms

t+1 − x−t+1)

Pst = Pt + Gt(Pst+1 −P−t+1)G
>
t

3 Filtering distribution: p(xt|y1:t) = N (xt;mt,Pt)

3 Smoothing distribution: p(xt|y1:T ) = N (xt;m
s
t ,P

s
t )

7 How to proceed if some model parameters are unknown ?
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I Recall the linear-Gaussian system:
I Unobserved state → xt = Atxt−1 + qt
I Observations → yt = Htxt + rt

where qt ∼ N (0,Qt) and rt ∼ N (0,Rt).
I In practice, most of these parameters are unknown: At, Ht, Qt, Rt.

I A common assumption is that they are static, i.e., A, H, Q, R.
I The most challenging parameter to estimate (but also interesting) is A:

I Graph discovery perspective: xt ∈ RNx contains Nx unidimensional
time-series, each of them acquired in a node of a graph (with Nx total
nodes)

I The elements ai,j of A represents, the linear effect of node j at time t− 1
in the update of the signal of node i at time t:

xt,i =

Nx∑
j=1

ai,jxt−1,j + qt,i (1)

I GraphEM: An expectation-maximization (EM) method within Kalman
filters for the estimation of A (along with the hidden states).1

1E. Chouzenoux and V. Elvira. “GraphEM: EM algorithm for blind Kalman filtering under
graphical sparsity constraints”. In: ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2020, pp. 5840–5844.
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GraphEM in a nutshell

• Goal: Find A∗ that maximizes p(A|y1:T ) ∝ p(A)p(y1:T |A), i.e., the MAP
estimate of A

I Equivalent to minimizing ϕT (A) = − log p(A)− log p(y1:T |A).
I Challenge: evaluating p(y1:T |A) (or ϕT (A)) requires to run Kalman filter:

ϕT (A) = − log p(A)+
T∑
t=1

1

2
log |2πSt(A)|+1

2
zt(A)>St(A)−1zt(A) (2)

I Non tractable minimization.

• EM strategy: Minimize a sequence of tractable approximations of ϕT
satisfying a majorizing property.

• Lasso regularization (prior): In order to limit the degrees of freedom in the
parametric model, we choose the prior to promote a sparse matrix A.

(∀A ∈ RNx×Nx) − log p(A) ≡ ϕ0(A) = γ‖A‖1, γ > 0.
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Expression of EM steps

• Majorizing approximation (E-step): Run the Kalman filter/RTS smoother by
setting the state matrix to A′ and define

Σ =
1

T

T∑
t=1

Ps
t + ms

t (m
s
t )
>,

Φ =
1

T

T∑
t=1

Ps
t−1 + ms

t−1(m
s
t−1)

>

C =
1

T

T∑
t=1

Ps
tG
>
t−1 + ms

t (m
s
t−1)

>.

Then, as a consequence of, we can build

Q(A;A′) =
T

2
tr
(
Q−1(Σ−CA> −AC> + AΦA>)

)
+ ϕ0(A) + C,

such that, for every A ∈ RNx×Nx :

Q(A;A′) ≥ ϕT (A), and Q(A′;A′) = ϕT (A
′).

• Upper bound optimization (M-step): The M-step consists in searching for a
minimizer of Q(A;A′) with respect to A (A′ being fixed).



17/24

Computation of the M-step
• Minimization problem:

argminAQ(A;A′)︸ ︷︷ ︸
f(A)

= argminA
T

2
tr
(
Q−1(Σ−CA> −AC> + AΦA>)

)
︸ ︷︷ ︸

f1(A)=upper bound of −log (p(y1:T |A))

+ γ‖A‖1︸ ︷︷ ︸
f2(A)=− log p(A)

(prior)

I Convex non-smooth minimization problem

• Proximal splitting approach: The proximity operator of f : RNx×Nx → R is defined2

proxf (Ã) = argminA

(
f(A) +

1

2
‖A− Ã‖2F

)
.

Douglas-Rachford algorithm

I Set Z0 ∈ RNx×Nx and θ ∈ (0, 2).
I For n = 1, 2, . . .

An = proxθf2 (Zn)

Vn = proxθf1 (2An − Zn)

Zn+1 = Zn + θ(Vn −An)

3 {An}n∈N guaranteed to converge to a minimizer of Q(A;A′) = f1 + f2
3 Both involved proximity operators have closed form solution.
2P.L. Combettes and JC. Pesquet. “Proximal Splitting Methods in Signal Processing.” In:

Fixed-Point Algorithms for Inverse Problems in Science and Engineering 49 (2011),
pp. 185–212.
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GraphEM algorithm

GraphEM algorithm

I Initialization of A(0).
I For i = 1, 2, . . .

E-step Run the Kalman filter and RTS smoother by setting A′ := A(i−1) and
construct Q(A;A(i−1)).

M-step Update A(i) = argminA
(
Q(A;A(i−1))

)
using Douglas-Rachford

algorithm.

3 Flexible approach, valid as long as the proximity operator of f2 is available.

3 sound convergence properties of the EM algorithm
I monotonical decrease and convergence of {ϕT (A(i))}i∈N can be shown.
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Data description and numerical settings

• Four synthetic datasets with H = Id and block-diagonal matrix A, composed
with b blocks of size (bj)1≤j≤b, so that Ny = Nx =

∑b
j=1 bj . We set T = 103,

Q = σ2
QId, R = σ2

RId, P0 = σ2
PId.

Dataset Nx (bj)1≤j≤b (σQ, σR, σP)

A 9 (3, 3, 3) (10−1, 10−1, 10−4)

B 9 (3, 3, 3) (1, 1, 10−4)

C 16 (3, 5, 5, 3) (10−1, 10−1, 10−4)

D 16 (3, 5, 5, 3) (1, 1, 10−4)

• GraphEM is compared with:
I Maximum likelihood EM (MLEM)3

I Granger-causality approaches: pairwise Granger Causality (PGC) and
conditional Granger Causality (CGC)4

3S. Sarkka. Bayesian Filtering and Smoothing. Ed. by Cambridge University Press. 3rd ed.
2013.

4D. Luengo et al. “Hierarchical algorithms for causality retrieval in atrial fibrillation
intracavitary electrograms”. In: IEEE journal of biomedical and health informatics 23.1
(2018), pp. 143–155.
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Experimental results
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Experimental results

method RMSE accur. prec. recall spec. F1

A

GraphEM 0.081 0.9104 0.9880 0.7407 0.9952 0.8463
MLEM 0.149 0.3333 0.3333 1 0 0.5
PGC - 0.8765 0.9474 0.6667 0.9815 0.7826
CGC - 0.8765 1 0.6293 1 0.7727

B

GraphEM 0.082 0.9113 0.9914 0.7407 0.9967 0.8477
MLEM 0.148 0.3333 0.3333 1 0 0.5
PGC - 0.8889 1 0.6667 1 0.8
CGC - 0.8889 1 0.6667 1 0.8

C

GraphEM 0.120 0.9231 0.9401 0.77 0.9785 0.8427
MLEM 0.238 0.2656 0.2656 1 0 0.4198
PGC - 0.9023 0.9778 0.6471 0.9949 0.7788
CGC - 0.8555 0.9697 0.4706 0.9949 0.6337

D

GraphEM 0.121 0.9247 0.9601 0.7547 0.9862 0.8421
MLEM 0.239 0.2656 0.2656 1 0 0.4198
PGC - 0.8906 0.9 0.6618 0.9734 0.7627
CGC - 0.8477 0.9394 0.4559 0.9894 0.6139
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Conclusions

GraphEM algorithm:

X Interpretation of hidden states as a (causal) directed graph

X Lasso penalization to promote sparsity
I common in complex systems
I reduces the implicit dimension

X EM-based method with proximal splitting M-step
I sound convergence guarantees

X Good numerical performance compared to several techniques



Thank you for your attention!

E. Chouzenoux and V. Elvira, “GraphEM: EM algorithm for blind Kalman filtering under

graphical sparsity constraints,” IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pp. 5840-5844, 2020.
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