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State-space models (SSMs)



Motivation

> A large class of problems in statistics, machine learning, and signal
processing requires sequential processing of observed data.
» Examples of applications:

>
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Geophysical systems (atmosphere, oceans)
Robotics

Target tracking, positioning, navigation
Communications

Biomedical signal processing

Financial engineering

Ecology



Inference in State-Space Models (SSM)

> Let us consider:
> a set of hidden states x; € R%, t =1,...,T.
> a set of observations y; € R4, t =1,...,T.

» A SSM is an underlying hidden process of x; that evolves and that,
partially and noisily, expresses itself through y:.
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» Two ways or describing the system:
1. Deterministic notation:
> Hidden state — x; = g(x¢—1,9q¢)
» Observations — y: = h(x¢,r¢)
where q; and r; are random noise vector (with known distributions of q¢
and r¢) and g(-) and h(-) are also known.
2. Probabilistic notation:
> Hidden state — p(x¢|x¢—1)
> Observations —  p(y¢|x:)



Example
» There are two interrelated random processes, one is observed and one is
hidden.

> e.g.,stochastic volatility model, very common in financial engineering

Tt

0.999z¢_1 + q¢
ye = e,

> with g¢ ~ N(0,1) and r; ~ N(0,1)
> Goal: estimate the hidden z; given the observed v .
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Example

» Consider the following stochastic volatility model, very common in
financial engineering

Ty 0.999x:—1 + q¢

z¢
Yo = €27,

> with gt ~ N(0,1) and s ~ N(0,1)
> Goal: estimate the hidden z; given the observed v .
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Bayesian filtering and the linear-Gaussian SSM



The estimation problem

» We sequentially observe observations y; related to the hidden state x;.

At time ¢, we have accumulated ¢ observations, yi.: = {y1....,y¢}.
Bayesian inference to estimate the unknown states

> measure of certainty by computing pdfs
The basic problems:

> Filtering: estimate current state p(x¢|yi./)

v

v

v

> Smoothing: refine estimate of past states p(x¢—+|y1:t), T>1

> State prediction: predict the future state p(X¢4+|y1:¢), T>1

> Observation prediction: predict the future observation
P(Yt+rly1e), T>1

» We will focus on smoothing and filtering problems

» We want to do it sequentially and efficiently.
> At time ¢, we want to process only y¢, but not reprocess all yi.+—1 (that
were already processed!)



The linear-Gaussian Model

» The linear-Gaussian model is arguably the most relevant SSM:
» Deterministic notation:
> Unobserved state -+ x¢ = Atx¢—1 + qe
> Observations — yt = Hix¢ +r¢
where q¢ ~ N (0,Q¢) and ry ~ N (0, Ry).
> Probabilistic notation:
> Hidden state — p(x¢|xt—1) = N(x¢; Arxi—1, Qt)
> Observations — p(yi|xi) = N(ye; Hixe, Ry)
» Kalman filter: obtains the filtering pdfs p(x;|y..), at each ¢
> Gaussian pdfs, with means and covariances matrices are calculated at each ¢
> Efficient processing of y¢, obtaining p(x¢|y1.¢) from p(x;—1|y1:4—1)
(intermediate result)
» Rauch-Tung-Striebel (RTS) smoother: obtains the smoothing distribution
p(x1:7|y1:7), i.e., posterior of the whole trajectory
> requires a backwards reprocessing, refining the Kalman estimates



Kalman Filter: prediction step

1. Prediction step (marginalization of Gaussian):
p(x¢|y1:e-1) = /p(x,sleq)p(xffl |Vii—1)dxi—1

» Suppose that filtered distribution at ¢t — 1 is Gaussian
p(xe—1ly1:e—1) = N(my_1,Pi_q).
» Predictive distribution is also Gaussian p(x;|yi..—1) = N(m, , P, )
> Mean: m, =Am;
> Variance: P, = AtPf,,lA? + Q¢

> Interpretation:
> The mean is projected through matrix A;

> The uncertainty is propagated too through A, plus the variance
of the process noise




Kalman Filter: update step

2. Update step (product of Gaussians):

(ye|xe)p(xe|y
])(Xf‘yl;r>:7(y)| )P(Xe|y1:e-1)
p(yt|yie—1)

> The filtered distribution at time ¢ is also Gaussian p(x;|y1..) = N (m, Py)

> Mean: m; =m, + K <yf — Hym, )
> Variance: P, = (I — K:H;) P,
where K; = P, HtT (HtP, HtT + Rt)_1 is the optimal Kalman gain.

~

> Interpretation:

> The mean is corrected w.r.t. the predictive in the direction of the
residual /error.

> The variance is propagated by H; and divided by the covariance of
the residual/error.




Kalman summary and RTS smoother

Kalman filter RTS smoother

> Initialize: mo, Py » Fort=1T,...,1

» Fort=1,...,T Smoothing stage:

x;_l = Aim:

x; = Aymy; P, = AP AT +Q

P, = AP, AT +Q G, =P:A] (P )"

my =my + Ge(mi,; —x;,)
P; =P:+ Gi(P§,, — P, )G/

Update stage:

zy =yt — Hix,

S: =HP, H] + R
K; =P, HS; !
my =%, + Kz

P, =P, — KS:K;

o’

v Filtering distribution: p(x:|y1.:) = N (x;;my, Py)

v/ Smoothing distribution: p(x¢|y1.7) = N (x:; mi, P})
X How to proceed if some model parameters are unknown ?
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GraphEM: Graph discovery in linear-Gaussian SSMs



> Recall the linear-Gaussian system:
> Unobserved state — x; = Ayx¢—1 + Q¢
» Observations — yt = Hixt +r¢
where q; ~ N(0,Q¢) and ry ~ N(0,Ry).
» In practice, most of these parameters are unknown: A;, H;, Q;, R;.
> A common assumption is that they are static, i.e., A, H, Q, R.
» The most challenging parameter to estimate (but also interesting) is A:

» Graph discovery perspective: x; € RNz contains N, unidimensional
time-series, each of them acquired in a node of a graph (with N, total
nodes)

> The elements a; ; of A represents, the linear effect of node j at time ¢t — 1
in the update of the signal of node 7 at time ¢:

Ng

Tei = D @i Teo1 + dea (1)
=1

> GraphEM: An expectation-maximization (EM) method within Kalman
filters for the estimation of A (along with the hidden states).

LE. Chouzenoux and V. Elvira. “GraphEM: EM algorithm for blind Kalman filtering under
graphical sparsity constraints”. In: ICASSP 2020-2020 |EEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). |IEEE. 2020, pp. 5840-5844.



GraphEM in a nutshell

e Goal: Find A* that maximizes p(A|y1.7) x p(A)p(y1.7|A), i.e., the MAP
estimate of A

» Equivalent to minimizing o7 (A) = —logp(A) —log p(y1.7|A).
> Challenge: evaluating p(y1.7|A) (or ¢ (A)) requires to run Kalman filter:

T
1 1 _
¢r(A) = —logp(A)+) 5 log|2W5t(A)|+§Zt(A)TSt(A) '2:(A) (2)
t=1
> Non tractable minimization.
e EM strategy: Minimize a sequence of tractable approximations of o

satisfying a majorizing property.

e Lasso regularization (prior): In order to limit the degrees of freedom in the
parametric model, we choose the prior to promote a sparse matrix A.

(VA e RM=*Me)  —logp(A) = po(A) =7[|All;, 7 >0.



Expression of EM steps

e Majorizing approximation (E-step): Run the Kalman filter/RTS smoother by
setting the state matrix to A’ and define

T
1 s s s
3 = T;Pf —l—mt(mt)—r,

T
1 S S S
P = T ;Pt—l + mt—l(mt—l)T
s
C= T ;PfGLl +mi(m;_,)".
Then, as a consequence of, we can build
an T -1 T T T
Q(A;A') = Etr Q (X-CA —AC +APA ) +eo(A)+C,
such that, for every A € RN=*Ne.
Q(A;A') > pr(A), and  Q(A;A') = pr(A').

e Upper bound optimization (M-step): The M-step consists in searching for a
minimizer of Q(A; A’) with respect to A (A’ being fixed).



Computation of the M-step

e Minimization problem:

T
argminy O(A; A’) = argmin, —tr (Q_1(2 —~CAT—ACT + A@AT)) +  AlAlL
——— 2 ——

f(a) f2(A)=—logp(A)

f1(A)=upper bound of —log (p(y1:7|A)) (prior)
» Convex non-smooth minimization problem

o Proximal splitting approach: The proximity operator of f : RNz XNz _ R is defined?

1 ~
prox;(A) = argmin o (f(A) + §||A — A||?;) .

Douglas-Rachford algorithm

> Set Zo € RN+XNxz and 0 € (0,2).
» Form=1,2,...

A = proxgyy, (Zn)
V5 = proxg g, (2A, — Zy,)
Zn+1 = Zn + e(vn - An)

v {An}nen guaranteed to converge to a minimizer of Q(A; A’) = f1 + fo
v/ Both involved proximity operators have closed form solution.

2P.L. Combettes and JC. Pesquet. “Proximal Splitting Methods in Signal Processing.” In:
Fixed-Point Algorithms for Inverse Problems in Science and Engineering 49 (2011),
pp. 185-212.



GraphEM algorithm

GraphEM algorithm

> Initialization of A(®).

» Fori=1,2,...

E-step Run the Kalman filter and RTS smoother by setting A’ := A1) and
construct Q(A; A1),

M-step Update A () = argmin (9(A; A(i_l))) using Douglas-Rachford
algorithm.

v/ Flexible approach, valid as long as the proximity operator of f> is available.

v/ sound convergence properties of the EM algorithm
> monotonical decrease and convergence of {7 (A()};en can be shown.



Outline

Experimental evaluation



Data description and numerical settings

e Four synthetic datasets with H = Id and block-diagonal matrix A, composed
with b blocks of size (bj)1<;<p, so that Ny = N, = Z?:I bj. We set T = 107,

Q =o3ld, R =0gld, Py = opld.

|

l Dataset “ Nz ‘ (bj)lgjgb ‘ (O’Q,O’R,Jp)
A 9 (3,3,3) [ (107110711079
B 9 (3,3,3) (1,1,107%)
C 16 | (3,5,5,3) | (10°1,1071,107%)
D 16 | (3,5,5,3) (1,1,107%)

e GraphEM is compared with:
» Maximum likelihood EM (MLEM)3
» Granger-causality approaches: pairwise Granger Causality (PGC) and
conditional Granger Causality (CGC)*

3S. Sarkka. Bayesian Filtering and Smoothing. Ed. by Cambridge University Press. 3rd ed

2013.
4D. Luengo et al. “Hierarchical algorithms for causality retrieval in atrial fibrillation

intracavitary electrograms”. In: |EEE journal of biomedical and health informatics 23.1

(2018), pp. 143-155.



Experimental results

True graph (left) and GraphEM estimate (right) for dataset C.



Experimental results

method RMSE | accur. prec. recall spec. F1
GraphEM 0.081 | 0.9104 | 0.9880 | 0.7407 | 0.9952 | 0.8463

A MLEM 0.149 | 0.3333 | 0.3333 1 0 0.5
PGC - 0.8765 | 0.9474 | 0.6667 | 0.9815 | 0.7826
CGC - 0.8765 1 0.6293 1 0.7727
GraphEM || 0.082 | 0.9113 | 0.9914 | 0.7407 | 0.9967 | 0.8477

B MLEM 0.148 | 0.3333 | 0.3333 1 0 0.5

PGC - 0.8889 1 0.6667 1 0.8

CGC - 0.8889 1 0.6667 1 0.8
GraphEM 0.120 | 0.9231 | 0.9401 0.77 0.9785 | 0.8427
C MLEM 0.238 | 0.2656 | 0.2656 1 0 0.4198
PGC - 0.9023 | 0.9778 | 0.6471 | 0.9949 | 0.7788
CGC - 0.8555 | 0.9697 | 0.4706 | 0.9949 | 0.6337
GraphEM 0.121 | 0.9247 | 0.9601 | 0.7547 | 0.9862 | 0.8421
D MLEM 0.239 | 0.2656 | 0.2656 1 0 0.4198
PGC - 0.8906 0.9 0.6618 | 0.9734 | 0.7627
CGC - 0.8477 | 0.9394 | 0.4559 | 0.9894 | 0.6139
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Conclusion



Conclusions

GraphEM algorithm:

v Interpretation of hidden states as a (causal) directed graph

v Lasso penalization to promote sparsity

> common in complex systems
> reduces the implicit dimension

V" EM-based method with proximal splitting M-step
> sound convergence guarantees

V" Good numerical performance compared to several techniques



Thank you for your attention!

E. Chouzenoux and V. Elvira, “GraphEM: EM algorithm for blind Kalman filtering under
graphical sparsity constraints,” IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5840-5844, 2020.
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