

Graph discovery and Bayesian filtering in state-space models

Víctor Elvira School of Mathematics University of Edinburgh

Joint work with Émilie Chouzenoux (INRIA, France)

Interfaces between Statistics, ML, & AI (& Signal Processing!) Centre for Statistics April 27, 2021

State-space models (SSMs)

Bayesian filtering and the linear-Gaussian SSM

GraphEM: Graph discovery in linear-Gaussian SSMs

Experimental evaluation

Motivation

- ► A large class of problems in statistics, machine learning, and signal processing requires sequential processing of observed data.
- Examples of **applications**:
 - Geophysical systems (atmosphere, oceans)
 - Robotics
 - Target tracking, positioning, navigation
 - Communications
 - Biomedical signal processing
 - Financial engineering
 - Ecology

Inference in State-Space Models (SSM)

- Let us consider:
 - a set of hidden states $\mathbf{x}_t \in \mathbb{R}^{d_x}$, t = 1, ..., T.
 - a set of observations $\mathbf{y}_t \in \mathbb{R}^{d_y}$, t = 1, ..., T.
- ► A SSM is an underlying hidden process of x_t that evolves and that, partially and noisily, expresses itself through y_t.

- Two ways or describing the system:
 - 1. Deterministic notation:
 - Hidden state $\rightarrow \mathbf{x}_t = g(\mathbf{x}_{t-1}, \mathbf{q}_t)$
 - Observations \rightarrow $\mathbf{y}_t = h(\mathbf{x}_t, \mathbf{r}_t)$

where \mathbf{q}_t and \mathbf{r}_t are **random** noise vector (with known distributions of \mathbf{q}_t and \mathbf{r}_t) and $g(\cdot)$ and $h(\cdot)$ are also known.

- 2. Probabilistic notation:
 - Hidden state $\rightarrow p(\mathbf{x}_t | \mathbf{x}_{t-1})$
 - Observations $\rightarrow p(\mathbf{y}_t | \mathbf{x}_t)$

Example

- There are two interrelated random processes, one is observed and one is hidden.
 - e.g., stochastic volatility model, very common in financial engineering

$$\begin{aligned} x_t &= 0.999 x_{t-1} + q_t \\ y_t &= e^{\frac{x_t}{2}} r_t, \end{aligned}$$

▶ with qt ~ N(0,1) and rt ~ N(0,1)
 ▶ Goal: estimate the hidden xt given the observed y1:t

Example

 Consider the following stochastic volatility model, very common in financial engineering

$$\begin{aligned} x_t &= 0.999 x_{t-1} + q_t \\ y_t &= e^{\frac{x_t}{2}} r_t, \end{aligned}$$

- with $q_t \sim \mathcal{N}(0, 1)$ and $r_t \sim \mathcal{N}(0, 1)$
- **Goal**: estimate the hidden x_t given the observed $y_{1:t}$

State-space models (SSMs)

Bayesian filtering and the linear-Gaussian SSM

GraphEM: Graph discovery in linear-Gaussian SSMs

Experimental evaluation

The estimation problem

- We sequentially observe observations \mathbf{y}_t related to the hidden state \mathbf{x}_t .
- At time t, we have accumulated t observations, $\mathbf{y}_{1:t} \equiv {\mathbf{y}_1, ..., \mathbf{y}_t}$.
- Bayesian inference to estimate the unknown states
 - measure of certainty by computing pdfs
- The basic problems:
 - Filtering: estimate current state $p(\mathbf{x}_t | \mathbf{y}_{1:t})$
 - **Smoothing**: refine estimate of past states $p(\mathbf{x}_{t-\tau}|\mathbf{y}_{1:t})$, $\begin{array}{c} \tau \ge 1 \\ \tau \ge 1 \end{array}$
 - State prediction: predict the future state $p(\mathbf{x}_{t+\tau}|\mathbf{y}_{1:t})$,
 - Observation prediction: predict the future observation $p(\mathbf{y}_{t+\tau}|\mathbf{y}_{1:t}), \quad \tau \ge 1$
- We will focus on smoothing and filtering problems
- We want to do it sequentially and efficiently.
 - At time t, we want to process only y_t , but not reprocess all $y_{1:t-1}$ (that were already processed!)

The linear-Gaussian Model

- The linear-Gaussian model is arguably the most relevant SSM:
- Deterministic notation:
 - Unobserved state $\rightarrow \mathbf{x}_t = \mathbf{A}_t \mathbf{x}_{t-1} + \mathbf{q}_t$
 - Observations $\rightarrow \mathbf{y}_t = \mathbf{H}_t \mathbf{x}_t + \mathbf{r}_t$

where $\mathbf{q}_t \sim \mathcal{N}(0, \mathbf{Q}_t)$ and $\mathbf{r}_t \sim \mathcal{N}(0, \mathbf{R}_t)$.

- Probabilistic notation:
 - $\blacktriangleright \text{ Hidden state } \rightarrow p(\mathbf{x}_t | \mathbf{x}_{t-1}) \equiv \mathcal{N}(\mathbf{x}_t; \mathbf{A}_t \mathbf{x}_{t-1}, \mathbf{Q}_t)$
 - Observations $\rightarrow p(\mathbf{y}_t | \mathbf{x}_t) \equiv \mathcal{N}(\mathbf{y}_t; \boldsymbol{H}_t \mathbf{x}_t, \mathbf{R}_t)$
- **•** Kalman filter: obtains the filtering pdfs $p(\mathbf{x}_t | \mathbf{y}_{1:t})$, at each t
 - \blacktriangleright Gaussian pdfs, with means and covariances matrices are calculated at each t
 - Efficient processing of y_t , obtaining $p(\mathbf{x}_t | \mathbf{y}_{1:t})$ from $p(\mathbf{x}_{t-1} | \mathbf{y}_{1:t-1})$ (intermediate $p(\mathbf{x}_t | \mathbf{y}_{1:t-1})$ result)
- Rauch-Tung-Striebel (RTS) smoother: obtains the smoothing distribution $p(\mathbf{x}_{1:T}|\mathbf{y}_{1:T})$, i.e., posterior of the whole trajectory
 - requires a backwards reprocessing, refining the Kalman estimates

Kalman Filter: prediction step

1. **Prediction** step (marginalization of Gaussian):

$$p(\mathbf{x}_t|\mathbf{y}_{1:t-1}) = \int p(\mathbf{x}_t|\mathbf{x}_{t-1}) p(\mathbf{x}_{t-1}|\mathbf{y}_{1:t-1}) d\mathbf{x}_{t-1}$$

- ► Suppose that filtered distribution at t 1 is Gaussian $p(\mathbf{x}_{t-1}|\mathbf{y}_{1:t-1}) \equiv \mathcal{N}(\mathbf{m}_{t-1}, \mathbf{P}_{t-1}).$
- Predictive distribution is also Gaussian $p(\mathbf{x}_t | \mathbf{y}_{1:t-1}) \equiv \mathcal{N}(\mathbf{m}_t^-, \mathbf{P}_t^-)$
 - Mean: $\mathbf{m}_t^- = \mathbf{A}_t \mathbf{m}_{t-1}$
 - Variance: $\mathbf{P}_t^- = \mathbf{A}_t \mathbf{P}_{t-1} \mathbf{A}_t^T + \mathbf{Q}_t$
 - Interpretation:
 - The mean is projected through matrix \mathbf{A}_t
 - The uncertainty is propagated too through A_t, plus the variance of the process noise

Kalman Filter: update step

2. Update step (product of Gaussians):

$$p(\mathbf{x}_t | \mathbf{y}_{1:t}) = \frac{p(\mathbf{y}_t | \mathbf{x}_t) p(\mathbf{x}_t | \mathbf{y}_{1:t-1})}{p(\mathbf{y}_t | \mathbf{y}_{1:t-1})}$$

- The filtered distribution at time t is also Gaussian $p(\mathbf{x}_t|\mathbf{y}_{1:t}) \equiv \mathcal{N}(\mathbf{m}_t, \mathbf{P}_t)$
 - Mean: $\mathbf{m}_t = \mathbf{m}_t^- + \mathbf{K}_t \left(\mathbf{y}_t \mathbf{H}_t \mathbf{m}_t^- \right)$
 - Variance: $\mathbf{P}_t = (\mathbf{I} \mathbf{K}_t \mathbf{H}_t) \mathbf{P}_t^-$

where $K_t = \mathbf{P}_t^{-} H_t^T \left(H_t \mathbf{P}_t^{-} H_t^T + \mathbf{R}_t \right)^{-1}$ is the optimal Kalman gain.

- Interpretation:
 - The mean is corrected w.r.t. the predictive in the direction of the residual/error.
 - The variance is propagated by H_t and divided by the covariance of the residual/error.

Kalman summary and RTS smoother

Kalman filter

- Initialize: m₀, P₀
- For $t = 1, \ldots, T$

$$\mathbf{x}_t^- = \mathbf{A}_t \mathbf{m}_{t-1}$$
$$\mathbf{P}_t^- = \mathbf{A}_t \mathbf{P}_{t-1} \mathbf{A}_t^\top + \mathbf{Q}_t$$

Update stage:

$$\begin{aligned} \mathbf{z}_t &= \mathbf{y}_t - \mathbf{H}_t \mathbf{x}_t \\ \mathbf{S}_t &= \mathbf{H} \mathbf{P}_t^- \mathbf{H}_t^\top + \mathbf{R}_t \\ \mathbf{K}_t &= \mathbf{P}_t^- \mathbf{H}_t^\top \mathbf{S}_t^{-1} \\ \mathbf{m}_t &= \mathbf{x}_t^- + \mathbf{K}_t \mathbf{z}_t \\ \mathbf{P}_t &= \mathbf{P}_t^- - \mathbf{K}_t \mathbf{S}_t \mathbf{K}_t^\top \end{aligned}$$

RTS smoother

For t = T,...,1 Smoothing stage:

$$\begin{aligned} \mathbf{x}_{t+1}^{-} &= \mathbf{A}_t \mathbf{m}_t \\ \mathbf{P}_{t+1}^{-} &= \mathbf{A}_t \mathbf{P}_t \mathbf{A}_t^{\top} + \mathbf{Q}_t \\ \mathbf{G}_t &= \mathbf{P}_t \mathbf{A}_t^{\top} (\mathbf{P}_{t+1}^{-})^{-1} \\ \mathbf{m}_t^s &= \mathbf{m}_t + \mathbf{G}_t (\mathbf{m}_{t+1}^s - \mathbf{x}_{t+1}^{-}) \\ \mathbf{P}_t^s &= \mathbf{P}_t + \mathbf{G}_t (\mathbf{P}_{t+1}^s - \mathbf{P}_{t+1}^{-}) \mathbf{G}_t^{\top} \end{aligned}$$

- ✓ Filtering distribution: $p(\mathbf{x}_t | \mathbf{y}_{1:t}) = \mathcal{N}(\mathbf{x}_t; \mathbf{m}_t, \mathbf{P}_t)$
- ✓ Smoothing distribution: $p(\mathbf{x}_t | \mathbf{y}_{1:T}) = \mathcal{N}(\mathbf{x}_t; \mathbf{m}_t^s, \mathbf{P}_t^s)$
- X How to proceed if some model parameters are unknown ?

State-space models (SSMs)

Bayesian filtering and the linear-Gaussian SSM

GraphEM: Graph discovery in linear-Gaussian SSMs

Experimental evaluation

- Recall the linear-Gaussian system:
 - Unobserved state \rightarrow $\mathbf{x}_t = \mathbf{A}_t \mathbf{x}_{t-1} + \mathbf{q}_t$
 - Observations $\rightarrow \mathbf{y}_t = \mathbf{H}_t \mathbf{x}_t + \mathbf{r}_t$

where $\mathbf{q}_t \sim \mathcal{N}(0, \mathbf{Q}_t)$ and $\mathbf{r}_t \sim \mathcal{N}(0, \mathbf{R}_t)$.

- ln practice, most of these parameters are unknown: A_t , H_t , Q_t , R_t .
 - A common assumption is that they are static, i.e., A, H, Q, R.
- The most challenging parameter to estimate (but also interesting) is A:
 - ▶ Graph discovery perspective: $\mathbf{x}_t \in \mathbb{R}^{N_x}$ contains N_x unidimensional time-series, each of them acquired in a node of a graph (with N_x total nodes)
 - The elements $a_{i,j}$ of **A** represents, the linear effect of node j at time t-1 in the update of the signal of node i at time t:

$$x_{t,i} = \sum_{j=1}^{N_x} a_{i,j} x_{t-1,j} + q_{t,i}$$
(1)

• GraphEM: An expectation-maximization (EM) method within Kalman filters for the estimation of A (along with the hidden states).¹

¹E. Chouzenoux and V. Elvira. "GraphEM: EM algorithm for blind Kalman filtering under graphical sparsity constraints". In: *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*. IEEE. 2020, pp. 5840–5844.

GraphEM in a nutshell

• Goal: Find A* that maximizes $p(A|y_{1:T}) \propto p(A)p(y_{1:T}|A)$, i.e., the MAP estimate of A

- Equivalent to minimizing $\varphi_T(\mathbf{A}) = -\log p(\mathbf{A}) \log p(\mathbf{y}_{1:T}|\mathbf{A})$.
- Challenge: evaluating $p(\mathbf{y}_{1:T}|\mathbf{A})$ (or $\varphi_T(\mathbf{A})$) requires to run Kalman filter:

$$\varphi_T(\mathbf{A}) = -\log p(\mathbf{A}) + \sum_{t=1}^T \frac{1}{2} \log |2\pi \mathbf{S}_t(\mathbf{A})| + \frac{1}{2} \mathbf{z}_t(\mathbf{A})^\top \mathbf{S}_t(\mathbf{A})^{-1} \mathbf{z}_t(\mathbf{A})$$
(2)

Non tractable minimization.

• EM strategy: Minimize a sequence of tractable approximations of φ_T satisfying a majorizing property.

• Lasso regularization (prior): In order to limit the degrees of freedom in the parametric model, we choose the prior to promote a sparse matrix A.

$$(\forall \mathbf{A} \in \mathbb{R}^{N_x \times N_x}) \quad -\log p(\mathbf{A}) \equiv \varphi_0(\mathbf{A}) = \gamma \|\mathbf{A}\|_1, \qquad \gamma > 0.$$

Expression of EM steps

• Majorizing approximation (E-step): Run the Kalman filter/RTS smoother by setting the state matrix to ${\bf A}'$ and define

$$\begin{split} \boldsymbol{\Sigma} &= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{s} + \mathbf{m}_{t}^{s} (\mathbf{m}_{t}^{s})^{\top}, \\ \boldsymbol{\Phi} &= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t-1}^{s} + \mathbf{m}_{t-1}^{s} (\mathbf{m}_{t-1}^{s})^{\top} \\ \mathbf{C} &= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{s} \mathbf{G}_{t-1}^{\top} + \mathbf{m}_{t}^{s} (\mathbf{m}_{t-1}^{s})^{\top}. \end{split}$$

Then, as a consequence of, we can build

$$\mathcal{Q}(\mathbf{A};\mathbf{A}') = rac{T}{2} \mathsf{tr} \left(\mathbf{Q}^{-1} (\mathbf{\Sigma} - \mathbf{C} \mathbf{A}^{ op} - \mathbf{A} \mathbf{C}^{ op} + \mathbf{A} \mathbf{\Phi} \mathbf{A}^{ op})
ight) + arphi_0(\mathbf{A}) + \mathcal{C},$$

such that, for every $\mathbf{A} \in \mathbb{R}^{N_x imes N_x}$:

$$\mathcal{Q}(\mathbf{A};\mathbf{A}') \geq \varphi_T(\mathbf{A}), \quad \text{and} \quad \mathcal{Q}(\mathbf{A}';\mathbf{A}') = \varphi_T(\mathbf{A}').$$

• Upper bound optimization (M-step): The M-step consists in searching for a minimizer of $Q(\mathbf{A}; \mathbf{A}')$ with respect to \mathbf{A} (\mathbf{A}' being fixed).

Computation of the M-step

• Minimization problem:

$$\operatorname{argmin}_{\mathbf{A}} \underbrace{\mathcal{Q}(\mathbf{A}; \mathbf{A}')}_{f(\mathbf{A})} = \operatorname{argmin}_{\mathbf{A}} \underbrace{\frac{T}{2} \operatorname{tr} \left(\mathbf{Q}^{-1} (\boldsymbol{\Sigma} - \mathbf{C}\mathbf{A}^{\top} - \mathbf{A}\mathbf{C}^{\top} + \mathbf{A}\boldsymbol{\Phi}\mathbf{A}^{\top}) \right)}_{f_{1}(\mathbf{A}) = \operatorname{upper bound of } -log \left(p(\mathbf{y}_{1:T} | \mathbf{A}) \right)} + \underbrace{\gamma \| \mathbf{A} \|_{1}}_{\substack{f_{2}(\mathbf{A}) = -\log p(\mathbf{A}) \\ (prior)}}$$

Convex non-smooth minimization problem

• Proximal splitting approach: The proximity operator of $f : \mathbb{R}^{N_x \times N_x} \to \mathbb{R}$ is defined²

$$\mathsf{prox}_f(\widetilde{\mathbf{A}}) = \mathsf{argmin}_{\mathbf{A}} \left(f(\mathbf{A}) + \frac{1}{2} \|\mathbf{A} - \widetilde{\mathbf{A}}\|_F^2 \right).$$

Douglas-Rachford algorithm

• Set
$$\mathbf{Z}_0 \in \mathbb{R}^{N_x \times N_x}$$
 and $\theta \in (0, 2)$.

• For
$$n = 1, 2, ...$$

 $\begin{aligned} \mathbf{A}_n &= \operatorname{prox}_{\theta f_2}(\mathbf{Z}_n) \\ \mathbf{V}_n &= \operatorname{prox}_{\theta f_1}(2\mathbf{A}_n - \mathbf{Z}_n) \\ \mathbf{Z}_{n+1} &= \mathbf{Z}_n + \theta(\mathbf{V}_n - \mathbf{A}_n) \end{aligned}$

✓ $\{\mathbf{A}_n\}_{n \in \mathbb{N}}$ guaranteed to converge to a minimizer of $\mathcal{Q}(\mathbf{A}; \mathbf{A}') = f_1 + f_2$

✓ Both involved proximity operators have closed form solution.

²P.L. Combettes and JC. Pesquet. "Proximal Splitting Methods in Signal Processing." In: *Fixed-Point Algorithms for Inverse Problems in Science and Engineering* 49 (2011), pp. 185–212.

GraphEM algorithm

GraphEM algorithm

- Initialization of A⁽⁰⁾.
- For $i = 1, 2, \ldots$

E-step Run the Kalman filter and RTS smoother by setting $\mathbf{A}' := \mathbf{A}^{(i-1)}$ and construct $\mathcal{Q}(\mathbf{A}; \mathbf{A}^{(i-1)})$.

 $\begin{array}{ll} \mbox{M-step } \mbox{Update } \mathbf{A}^{(i)} = \mbox{argmin}_{\mathbf{A}} \left(\mathcal{Q}(\mathbf{A};\mathbf{A}^{(i-1)}) \right) \mbox{ using Douglas-Rachford algorithm.} \end{array}$

✓ Flexible approach, valid as long as the proximity operator of f_2 is available.

- $\checkmark\,$ sound convergence properties of the EM algorithm
 - monotonical decrease and convergence of $\{\varphi_T(\mathbf{A}^{(i)})\}_{i\in\mathbb{N}}$ can be shown.

State-space models (SSMs)

Bayesian filtering and the linear-Gaussian SSM

GraphEM: Graph discovery in linear-Gaussian SSMs

Experimental evaluation

Data description and numerical settings

• Four synthetic datasets with $\mathbf{H} = \mathbf{Id}$ and block-diagonal matrix \mathbf{A} , composed with b blocks of size $(b_j)_{1 \le j \le b}$, so that $N_y = N_x = \sum_{j=1}^{b} b_j$. We set $T = 10^3$, $\mathbf{Q} = \sigma_{\mathbf{Q}}^2 \mathbf{Id}$, $\mathbf{R} = \sigma_{\mathbf{R}}^2 \mathbf{Id}$, $\mathbf{P}_0 = \sigma_{\mathbf{P}}^2 \mathbf{Id}$.

Dataset N_x		$(b_j)_{1 \le j \le b}$	$(\sigma_{\mathbf{Q}}, \sigma_{\mathbf{R}}, \sigma_{\mathbf{P}})$		
A	9	(3, 3, 3)	$(10^{-1}, 10^{-1}, 10^{-4})$		
В	9	(3, 3, 3)	$(1, 1, 10^{-4})$		
С	16	(3, 5, 5, 3)	$(10^{-1}, 10^{-1}, 10^{-4})$		
D	16	(3, 5, 5, 3)	$(1, 1, 10^{-4})$		

- GraphEM is compared with:
 - Maximum likelihood EM (MLEM)³
 - Granger-causality approaches: pairwise Granger Causality (PGC) and conditional Granger Causality (CGC)⁴

³S. Sarkka. *Bayesian Filtering and Smoothing*. Ed. by Cambridge University Press. 3rd ed. 2013.

⁴D. Luengo et al. "Hierarchical algorithms for causality retrieval in atrial fibrillation intracavitary electrograms". In: *IEEE journal of biomedical and health informatics* 23.1 (2018), pp. 143–155.

Experimental results

True graph (left) and GraphEM estimate (right) for dataset C.

Experimental results

	method	RMSE	accur.	prec.	recall	spec.	F1
А	GraphEM	0.081	0.9104	0.9880	0.7407	0.9952	0.8463
	MLEM	0.149	0.3333	0.3333	1	0	0.5
	PGC	-	0.8765	0.9474	0.6667	0.9815	0.7826
	CGC	-	0.8765	1	0.6293	1	0.7727
В	GraphEM	0.082	0.9113	0.9914	0.7407	0.9967	0.8477
	MLEM	0.148	0.3333	0.3333	1	0	0.5
	PGC	-	0.8889	1	0.6667	1	0.8
	CGC	-	0.8889	1	0.6667	1	0.8
С	GraphEM	0.120	0.9231	0.9401	0.77	0.9785	0.8427
	MLEM	0.238	0.2656	0.2656	1	0	0.4198
	PGC	-	0.9023	0.9778	0.6471	0.9949	0.7788
	CGC	-	0.8555	0.9697	0.4706	0.9949	0.6337
D	GraphEM	0.121	0.9247	0.9601	0.7547	0.9862	0.8421
	MLEM	0.239	0.2656	0.2656	1	0	0.4198
	PGC	-	0.8906	0.9	0.6618	0.9734	0.7627
	CGC	-	0.8477	0.9394	0.4559	0.9894	0.6139

State-space models (SSMs)

Bayesian filtering and the linear-Gaussian SSM

GraphEM: Graph discovery in linear-Gaussian SSMs

Experimental evaluation

Conclusions

GraphEM algorithm:

- \checkmark Interpretation of hidden states as a (causal) directed graph
- \checkmark Lasso penalization to promote sparsity
 - common in complex systems
 - reduces the implicit dimension
- $\checkmark\,$ EM-based method with proximal splitting M-step
 - sound convergence guarantees

 $\checkmark\,$ Good numerical performance compared to several techniques

Thank you for your attention!

E. Chouzenoux and V. Elvira, "GraphEM: EM algorithm for blind Kalman filtering under graphical sparsity constraints," IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5840-5844, 2020.