Tail Index Regression–Adjusted Functional Covariate

Anwar Alabdulathem¹, Miguel de Carvalho²

¹s1794726@ed.ac.uk, ¹ School of Mathematics, University of Edinburgh, UK, ²miguel.decarvalho@ed.ac.uk, ²Reader in Statistics, School of Mathematics, University of Edinburgh, UK

Generalized Pareto distribution (GPD)

The generalized Pareto distribution (GPD) is a two parameter distribution with distribution function.

 $\hat{\beta}(t) = \sum_{j=1}^{\eta+1} \hat{w}_j B_j(t)$

Experiments of Artificial Data

 $\begin{bmatrix} 1 - (1 \pm \xi r / \sigma)^{-1/\xi} & \xi \neq 0 \end{bmatrix}$

$$G_{\xi,\sigma}(x) = \begin{cases} 1 - (1 + \zeta x/\sigma) & r^{3}, & \zeta \neq 0\\ 1 - \exp(-x/\sigma), & \xi = 0 \end{cases}$$

where $\sigma > 0$, and the support is $x \ge 0$ when $\xi \ge 0$ and $x \in [0, -\sigma/\xi]$ when $\xi < 0$.

Functional Covariate-Adjusted Tail Index Model:

 $1 - F(y \mid X) = y^{-\alpha_X} L(y \mid X).$

Where $\alpha_X = \exp(\langle X, \beta \rangle)$, with $X \equiv X(t)$ is a functional covariate and $\beta \equiv \beta(t)$ is a function of the regression coefficient and both $X, \beta \in X$ being a squared-integrable function and with $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$.

Coefficient Regression $\beta(t)$

Assume that $\beta(t)$ can be written as a function of spline which has the form of de Boor (2001), $\beta(t) = \sum_{j=1}^{\eta+1} w_j B_j(t), \quad j = 1, \dots, \eta$

- Scenario 1, Pareto (α_X) .
- Scenario 2, $Burr(1, \alpha_X)$.
- Scenario 3, $GPD(1,1,\alpha_X)$.

where $X_i(t)=Z_i^2(t)$ and $Z_i(t)$ is Brownian bridge $Z = \{Z(t) : t \in [0,1]\}$ and the true coefficient functions are, $\beta_1(t) = \cos(3t)^2$, $\beta_2(t) = \sin(2t)^2$, $\beta_3(t) = \cos(6t)^2 / \exp(t)$ respectively

where $\{B_j, j = 1, \dots, \eta + 1\}$ is a B-spline basis.

Learning from Data

To learn about the tail index we follow Wang and Tsai (2009). Let $\{(X_i, Y_i)\}_{i=1}^n$ be a random sample where $X_i \in X$ and the Y_i are random variables and

$$\mathcal{R}_{n}(\mathbf{w}) = \sum_{i=1}^{n} \left\{ \exp(\langle X_{i}(t), \sum_{j=1}^{\eta+1} w_{j}B_{j}(t)\rangle) \log(Y_{i}/\nu_{n}) - X_{i}(t), \sum_{j=1}^{\eta+1} w_{j}B_{j}(t) \right\} I(Y_{i} > \nu_{n})$$

Figure 1: Response Y of sample size n = 200 for Scenarios 1-3;(Right) along with corresponding to trajectories $Z(t)^2$ of Brownian bridge;(Left) simulation result for a beta estimate (dashed line) against corresponding a true beta (solid line). (top) $\beta_1(t) = \cos(3t)^2$ (middle) $\beta_2(t) = \sin(2t)^2$ (bottom) $\beta_3(t) = \cos(6t)^2 / \exp(t)$.

References

de Boor, C. (2001). A practical guide to splines.(rev. ed.) springer-verlag. New York.
Wang, H. and Tsai, C.-L. (2009). Tail index regression. Journal of the American Statistical Association, 104(487):1233–1240.